Chargé(e) de recherche CNRS

Photo Portrait de Sophie Martin

Sophie Martin est chargée de recherche au CNRS


Expérience professionnelle

  • Depuis 2009 : Chargée de recherche au Laboratoire Adaptation et Diversité en Milieu Marin (AD2M), Roscoff, France
  • 2007 - 2009 : Post-doctorat au Radioecology Laboratory, Marine Environment Laboratories, International Atomic Energy Agency (IAEA), Monaco
  • 2006 - 2007 : Post-doctorat au Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-mer, France
  • 2002 - 2005 : Thèse de doctorat au Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, France


Axes de recherche

  • Cycle du carbone et des carbonates en milieu côtier (de l'échelle de l'organisme à l'échelle de l'écosystème)
  • Fonctionnement des communautés benthiques
  • Réponse des organismes benthiques aux changements globaux (acidification et réchauffement global des océans) et locaux (eutrophisation)





Dorey N., Martin S., Oberhänsli F., Teyssié J.-L., Jeffree R., Lacoue-Labarthe T. (2018) Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus. Journal of Environmental Radioactivity, 190-191: 20-30.

Lacoue-Labarthe T., Oberhänsli F., Teyssié J.-L., Martin S. (2018) Delineation of metals and radionuclides bioconcentration in eggs of seabream Sparus aurata and effect of environmental pCO2. Journal of Environmental Radioactivity, 192: 426-433.

Legrand E., Martin S., Leroux C., Riera P. (2018) Effect of temperature on an alga-grazer trophic interaction: a dual stable isotope (13C, 15N) labeling experiment. Marine Ecology, e12495.

Legrand E., Riera P., Bohner O., Derrien M., Schlicklin F., Coudret J., Martin S. (2018) Impact of ocean acidification and warming on the productivity of a rock pool community. Marine Environmental Research, 136: 78-88.

Legrand E., Riera P., Pouliquen L., Bohner O., Cariou T., Martin S. (2018) Ecological characterization of intertidal rockpools: Seasonal and diurnal monitoring of physico-chemical parameters. Regional Studies in Marine Science, 17: 1-10.

Qui-Minet Z., Delaunay C., Grall J., Six C., Cariou T., Bohner O., Legrand E., Davoult D., Martin S. (2018) The role of local environmental changes on maerl and its associated noncalcareous epiphytic flora in the Bay of Brest. Estuarine, Coastal and Shelf Science, 208: 140-152.

Wessel N., Martin S., Badou A., Dubois P., Huchette S., Julia V., Nunes F., Harney E., Paillard C., Auzoux-Bordenave S. (2018) Effect of CO2–induced ocean acidification on the early development and shell mineralization of the European abalone (Haliotis tuberculata). Journal of Experimental Marine Biology and Ecology, 508: 52-63.


Cox E., Díaz-Castañeda V., Martin S., Alliouane S., Mahacek P., Le Fur A., Gattuso J.-P., Gazeau F. (2017) Effects of in situ CO2 enrichment on epibiont settlement on artificial substrata within a Posidonia oceanica meadow. Journal of Experimental Marine Biology and Ecology, 497 : 197-211.

Cox T., Nash M., Gazeau F., Déniel M., Legrand E., Alliouane S., Mahacek P., Le Fur A., Gattuso, J.-P., Martin S. (2017) Effects of in situ CO2 enrichment on Posidonia oceanica epiphytic community composition and mineralogy. Marine Biology, 164: 103.

Legrand E., Riera P., Lutier M., Coudret J., Grall J., Martin S. (2017) Species interactions can shift the response of a maerl bed community to ocean acidification and warming. Biogeosciences, 14, 5359-5376.

Martin S., Hall-Spencer J. (2017) Effects of Ocean Warming and Acidification on Rhodolith/Maerl Beds. In: Riosmena-Rodríguez R., Nelson W., Aguirre J. (eds) Rhodolith/Maërl Beds: A Global Perspective. Springer, pp.55-85. Coastal Research Library, vol 15. Springer, Cham.


Egilsdottir H., Olafsson J., Martin S. (2016) Photosynthesis and calcification in the articulated coralline alga Ellisolandia elongata (Corallinales, Rhodophyta) from intertidal rock pools. European Journal of Phycology, 51(1): 59-70.

Nash M.C., Martin S., Gattuso J.P. (2016) Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming. Biogeosciences, 13: 5937-5945.

Noisette F., Bordeyne F., Davoult D., Martin S. (2016) Assessing the physiological responses of the gastropod Crepidula fornicata to predicted ocean acidification and warming conditions. Limnology & Oceanography, 61: 430-444.

Riera P., Noel L., Leroux C., Legrand E., Martin S. (2016) Effect of elevated pCO2 on biofilm - Herbivore trophic interactions: Prelimanary investigation through a stable isotope experiment. Vie et Milieu - Life and Environment, 66(3-4): 245-249.


Noisette F., Richard J., Le Fur I., Peck L.S., Davoult D., Martin S. (2015) Metabolic responses to temperature stress under elevated pCO2 in the slipper limpet Crepidula fornicata. Journal of Molluscan Studies, 81: 238-246.

Réveillac E., Lacoue-Labarthe T., Oberhänsli F., Teyssié J.-L., Jeffree R., Gattuso J.-P., Martin S. (2015) Ocean acidification reshapes the otolith-body allometry of growth in juvenile sea bream. Journal of Experimental Marine Biology and Ecology, 463: 87-94.


Gattuso J.-P., Kirkwood W., Barry J.-P., Cox E., Gazeau F., Hansson L., Hendriks I. E., Kline D. I., Mahacek P., Martin S., McElhany P., Peltzer E., Reeve J., Roberts D., Saderne V., Tait K., Widdicombe S. & Brewer P. (2014) Free-ocean CO2 enrichment (FOCE) systems: present status and future developments. Biogeosciences,  11: 4057-4075.

Noisette F., Comtet T., Legrand E., Bordeyne F., Davoult D., Martin S. (2014) Does encapsulation protect embryos from the effects of ocean acidification? The example of Crepidula fornicata. PLoS One, 9 (3): e93021.


Dorey N., Melzner F., Martin S., Oberhänsli F., Teyssié J.-L., Bustamant P., Gattuso J.-P., Lacoue-Labarthe T. (2013) Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis. Marine Biology, 160:2007–2022.

Egilsdottir H., Noisette F., Noël L.M.-L.J., Olafsson J., Martin S. (2013) Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology, 160:2103–2112.

Gazeau F., Parker L. M., Comeau S., Gattuso J.-P., O’Connor W. A., Martin S., Pörtner H.-O., Ross P. M. (2013) Impacts of ocean acidification on marine shelled molluscs. Marine Biology, 160:2207–2245.

Kamenos N. A., Burdett H. L., Aloisio E., Findlay H. S., Martin S., Longbone C., Dunn J., Widdicombe S., Calosi P. (2013) Calcifying algae respond differently to the rate and magnitude of marine acidification. Global Change Biology, 19(12): 3621–3628.

Martin S., Cohu S., Vignot C., Zimmerman G., Gattuso J.-P. (2013) One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecology and Evolution, 3(3), 676-693.

Martin S., Charnoz A., Gattuso J.-P. (2013) Photosynthesis, respiration and calcification of the Mediterranean crustose coralline alga Lithophyllum cabiochae (Corallinales, Rhodophyta). European Journal of Phycology, 48 (2), 163-172.

Noisette F., Duong G., Six C., Davoult D., Martin S. (2013) Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. Journal of Phycology, 49, 746-757.

Noisette F., Egilsdöttir H., Davoult D., Martin S. (2013) Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. Journal of Experimental Marine Biology and Ecology, 448, 179-187.