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chapter twenty four

Actin fluorescent staining in 
the filamentous brown alga 
Ectocarpus siliculosus
Hervé Rabillé, Maria Koutalianou, Bénédicte Charrier, 
and Christos Katsaros

24.1 Introduction
Brown algae (Phaeophyceae) are a very interesting group of macroalgae 
that acquired a complex multicellularity independently of land plants or 
animals (Bogaert et al. 2013). In the past 10 years, genetic and molecular 
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studies of fundamental processes governing brown algal development 
have bene�ted from the selection of Ectocarpus siliculosus as a new model 
species for this group, because of its very simple �lamentous body plan 
and of the easiness of its cultivation (Peters et al. 2004; Charrier et al. 2008; 
Le Bail and Charrier 2013).

A major component involved in brown algal morphogenesis is the 
cytoskeleton, consisting of microtubules (MTs) and actin �laments 
(AFs). The role of the cytoskeleton in the brown algal morphogenesis 
has repeatedly been underlined in several studies, particularly after the 
development of immuno�uorescence techniques (Katsaros et al. 2006, 
for literature).

Contrary to higher plants, brown algae bear a unique and complex 
cell wall, which caused problems in the localization of cytoskeleton, when 
protocols described for plant cells were followed. Therefore, it became 
necessary to develop modi�ed protocols suitable for brown algae (Coelho 
et al. 2012a).

As in land plants (Viridiplantae), fungi and animals (Opistokonts), 
AFs are thought to play a very important role in cell and tissue devel-
opment in brown algae. Previous works showed their importance in the 
polarization processes in fucoid zygotes (Hable et al. 2003; Bisgrove and 
Kropf 2004; Hable and Kropf 2005; Bogaert et al. 2013), branching in �la-
mentous gametophytes (Varvarigos et al. 2004), cytokinesis (Karyophyllis 
et al. 2000a; Bisgrove and Kropf 2004; Nagasato et al. 2010), and growth 
and morphogenesis of tip-growing apical cell of Sphacelaria rigidula 
(Karyophyllis et al. 2000b; Katsaros et al. 2002, 2003, 2006).

In some of these studies, the �ne structure of AF networks was 
determined by immunolabeling. AF networks can display various orga-
nizations, and to understand their role in cellular processes such as 
polarization, intracellular traf�cking or growth, knowledge of its 3D orga-
nization within the cell is required (Chebli et al. 2013).

When the transformation is possible, an actin-binding protein probe 
labeled with GFP can be used to reveal the actin organization in living cells 
(Wilsen et al. 2006; Meijer et al. 2014), but this technique is not available in 
brown algae yet. Immunolocalization on �xed material represents a good 
alternative to GFP tagging, with the additional advantage of revealing the 
majority of the AF structures present in a cell in a single experiment, con-
trary to in vivo GFP-tagged probe that can only recognize some speci�c AF 
con�gurations (Wilsen et al. 2006).

As AFs are very delicate structures, moreover sensitive to the �xa-
tion procedure (Katsaros et al. 2006), a modi�ed protocol has been devel-
oped for brown algal cells. The detailed steps of this alternative protocol 
using Rhodamine–Phalloidin labeling are described in this chapter. It 
has proven to be successful in Sphacelaria and Dictyota, but the version 
given has been adapted for Ectocarpus siliculosus, the model brown algal 
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species for which protocols for immunolabeling of cytoplasmic proteins 
has already been established (Coelho et al. 2012a, b).

24.2 State of the art
Actin �uorescent staining has been tried in all the major plant lin-
eages, including land plants (Traas et al. 1987; Kakimoto and Shibaoka 
1987a; Sonobe and Shibaoka 1989; Doris and Steer 1996; Lovy-Wheeler 
et al. 2005), fungi (Heath et al. 2000), microalgae (Harper et al. 1992; 
P�ügl-Haill et al. 2000; Hawkins et al. 2003), and macroalgae (Garbary 
et al. 1992; Katsaros et al. 2006). A �uorescent probe conjugated to phal-
loidin, a toxic bicyclic peptide �rst extracted from the fungus Amanita 
phalloides (Barden et al. 1987), is used to label AFs, although several 
anti-actin antibodies are also used.

Most of AF staining techniques on plant cells were �rst estab-
lished for terrestrial plants (Perdue and Parthasarathy 1985; Kakimoto 
and Shibaoka 1987a, b; Parthasarathy 1987; Traas et al. 1987; Sonobe and 
Shibaoka 1989; Heslop-Harrison and Heslop-Harrison 1991; Doris and 
Steer 1996; Wasteneys et al. 1997; Vitha et al. 2000; Lovy-Wheeler et al. 
2005; Dyachok et al. 2010). One of the major inputs from these works on 
land plant immunocytochemistry was the use of m-maleimidobenzoyl 
N-hydroxysuccinimide ester (commonly abbreviated as MBS) as an actin-
stabilizing reagent added before the �xation steps (Sonobe and Shibaoka 
1989; Doris and Steer 1996). Another �nding was the necessity to partially 
digest the cell wall (CW) to allow the �uorescent probe to get access to the 
cytoplasm. In this case, the enzymes used were cellulases and pectolyases 
(Lloyd et al. 1979; Kakimoto and Shibaoka 1987b; Sonobe and Shibaoka 
1989; Vitha et al. 2000; Szechyn′ ska-Hebda et al. 2006; Dyachok et al. 2010).

In green macroalgae, very few studies of AF organization were con-
ducted, except in the Characean algae (Chara, Nitella) and some coenocytic 
algae such as Acetabularia and Caulerpa. As in land plants, the �xation pro-
cedure was commonly carried out with classical aldehyde compounds, 
but sometimes it could be omitted, and AFs were labeled directly in vivo 
(Tewinkel et al. 1989; Sampson and Pickett-Heaps 2001). Curiously, the 
CW digestion step was omitted in most studies. In some cases, simple 
cell permeabilization appeared suf�cient (Tewinkel et al. 1989; Braun and 
Wasteneys 1998; Sampson and Pickett-Heaps 2001), whereas in others, 
methods to get through the CW barrier were used (e.g., freeze-chattering 
of rhizoid and protonemata of characean algae; Braun and Wasteneys 
1998). Moreover, in the giant coenocytic green alga Acetabularia, the CW 
showed to be insensitive to enzymatic treatments (Sawitzky et al. 1996), 
and for this species and other giant coenocytic algae, AF staining was 
conducted on microdissected cells (Menzel 1987) or cytoplasm extruded 
from its cell wall (La Claire II 1989; Mine et al. 2001).
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AF staining procedure was also developed for red macroalgae in 
the 1990s (McDonald et al. 1993). Red macroalgae possess a complex CW 
(Garbary et al. 1992; Popper et al. 2011) and so several enzyme cocktails 
have been used, including cellulase alone (Reis et al. 2013), a mix of cel-
lulase and snail gut extract (McDonald et al. 1993), or β-glucuronidase 
(Garbary et al. 1992; Garbary and McDonald 1996). However, the CW 
digestion step had to be adapted to each species (McDonald et al. 1993), 
sometimes leading to damaged cell ultrastructures, which raises some 
doubts about the observed AF organization. As in green macroalgae, 
some studies reported successful AF labeling in red macroalgae with-
out CW digestion steps (Kim and Kim 1999; Kim et al. 2001; Wilson 
et al. 2003).

On brown macroalgae (Phaeophyceae), few AF staining studies have 
been conducted until now, and most of them were only focused on fucoid 
zygotes during polarization and germination (Brawley and Robinson 
1985; Kropf et al. 1989; Alessa and Kropf 1999; Hable et al. 2003). In the 
earliest studies, protocols did not include any CW digestion step, but only 
cell permeabilization using compounds such as saponin or Triton X-100 
after �xation (Brawley and Robinson 1985; Kropf et al. 1989; Alessa and 
Kropf 1999). However, fucoid zygotes are free naked cells, directly in con-
tact with the external medium, in which the cell wall is just beginning to 
form (Bisgrove and Kropf 2001). Therefore, this simple procedure would 
not be as effective for other cell types, especially for cells encased in a 
tissue. Moreover, Phaeophyceae have a very complex cell wall, the composi-
tion of which strongly differs from that of land plants or other macroal-
gae. As mentioned in the introduction, land plants and brown algae differ 
strongly in their CW composition and structure, cellulose, hemicellulose, 
arabinogalactan, and callose being the only polymers that the two groups 
have in common (Popper et al. 2011; Deniaud-Bouët et al. 2014; Hervé 
et al. 2016). The two major components of the brown algal cell wall are 
alginates and sulfated fucans that are speci�c to this class of macroalgae 
(Mabeau and Kloareg 1987; Popper et al. 2011). Brown algal cell wall also 
contains proteins, halogenated and sulfated phenolic molecules (named 
phlorotannins), and halides (Deniaud-Bouët et al. 2014). As a consequence, 
the digestion steps necessary to permeabilize the cell must be adapted to 
these particular molecules.

In 2000, Karyophyllis and colleagues adapted several protocols from 
previous studies on pollen tubes (Sonobe and Shibaoka 1989) and red 
algae (Garbary et al. 1992) to improve AF staining on the apical cells of 
Sphacelaria rigidula (Karyophyllis et al. 2000a, b). This protocol improved 
AF staining by introducing MBS as an AF-stabilizing agent before chemi-
cal �xation. In addition, CW is digested by a complex mixture of enzymes, 
including cellulase, β-glucuronidase, and sulfatase (both from aba-
lone acetone powder), pectinase, hemicellulase (both from macerozyme 
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product, Onozuka R-10, Yakult), laminarase, and xylanase (both from 
driselase product, Sigma) (Karyophyllis et al. 2000a). Using Rhodamine–
Phalloidin or anti-actin antibody to tag AFs and with some modi�cations, 
this new protocol allowed the visualization of the �ne AF organization 
in several species and cell types of Phaeophyceae, including apical and 
other vegetative cells of Sphacelaria rigidula (Karyophyllis et al. 2000b), and 
Dictyota dichotoma (Katsaros et al. 2002), polarizing cells of Macrocystis 
pyrifera gametophytes (Varvarigos et al. 2004, 2007) and again in fucoid 
zygotes (Hable et al. 2003; Bisgrove and Kropf 2004). Recently, it has been 
successfully applied to Ectocarpus sporophyte cells, and the different steps 
are described in this chapter.

24.3 Materials
24.3.1 Chemicals

• DMSO 100%.
• Glycerol 100%.
• Cell-wall digesting enzymes:

• Cellulase (Onozuka R-10, Yakult).
• Hemicellulase (H2125, Sigma).
• Driselase (D8037-1G, Sigma).
• Macerozyme (Onozuka R-10, Yakult).
• Pectinase (P2401, Sigma).
• Alginate lyase (A1603, Sigma).

• m-maleimido benzoic acid N-hydroxy succinimide ester (MBS, 
M2786, Sigma).

• Natural or arti�cial seawater (ASW) (to wash free-�oating �laments 
before pre�xation. Must be autoclaved and kept sterile, if possible).

• Paraformaldehyde (PFA, powder).
• p-phenylenediamine (PDA).
• Poly-l-lysine (1 mg mL−1).
• Rhodamine–Phalloidin (Sigma or Biotium) or AlexaFluor568–

Phalloidin (in general, AlexaFluor568 is more suited for plant mate-
rial than Rhodamine–Phalloidin).

• Triton X-100.

24.3.2 Solutions and recipes

24.3.2.1  Preparation of Rhodamine–Phalloidin (R415) or 
AlexaFluor568–Phalloidin (A12380, life technology)

Dilute the content of a whole tube (300 U) into 1.5 mL of methanol, fol-
lowing the manufacturer’s directions. The �nal concentration is about 
6.6 µM (=200 U mL−1). Store at −20°C in the dark.
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The instructions for the preparation of buffers and other solutions are 
indicated in Tables 24.1 through 24.10.

24.3.2.2 Preparation of buffers
Table 24.1 Microtubule stabilizing buffer (MTB) modi�ed for actin

Composition
Final 

concentration
Quantity to add 

(for 1 L final)

Pipes 50 mM 15.12 g
EGTA 5 mM 1.318 g
MgSO4 5 mM 1.902 g
KCl 25 mM 1.86 g
NaCl 4% (w/v) 40 g
PVP
(Polyvinylpyrrolidone 25)

2.5% (w/v) 25 g

DTT
((−)-1,4-dithio-l-threitol)

1 mM 0.154 g

Pure water – qsp 1 L

Note: Adjust pH to 7.4. Store at 4°C.

Table 24.2 Phosphate-buffered saline (PBS)

Composition
Final 

concentration
Quantity to 

add (for 1 L final)

NaCl 137 mM 8.01 g
KCl 0.7 mM 0.052 g
Na2HPO4 5.1 mM 0.72 g
KH2PO4 1.7 mM 0.22 g
Distilled water – qsp 1 L

Note: Adjust pH to 7.4. Store at 4°C.

Table 24.3 Stock solution of MBS (m-maleimido benzoic acid 
N-hydroxy succinimide ester)

Composition Final concentration
Quantity to add 
(for 1 mL final)

MT-buffer – 980 µL
DMSO 2% 20 µL
MBS 100 mM 0.0943 g

Note: Store in the dark at −20°C. As the product is better preserved as a 
powder (at −20°C), prepare preferably a small volume of stock 
solution just before a series of experiments.
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Table 24.5 Fixation solution

Composition
Final 

concentration
Quantity to add 
(for 10 mL final)

MT buffer – 10 mL
PFA
(Paraformaldehyde)

4% 0.4 g

Note: Distribute in 1 mL aliquots and store at −20°C.

Table 24.4 Actin-stabilization solution

Composition Final concentration
Quantity to add 
(for 1 mL final)

MTB – 975 µL
Triton X-100 0.2% 2 µL
DMSO 2% 20 µL
MBS 300 µM 3 µL of a stock 

solution at 
100 mM

Note: Prepare fresh solution just before use.

Table 24.6 Cell wall lysis buffer

Composition
Final 

concentration
Quantity to add 
(for 2 mL final)

PBS:MTB 1:1 – 1946 µL
Triton X-100 (pure) 0.2% (v:v) 4 µL
Rhodamine – (or 
AlexaFluor568) – Phalloidin

0.17 µM 50 µL of stock 
solution at 
6.6 µM

Cellulase 2% (w:v) 40 mg
Hemicellulase 2% (w:v) 40 mg
Driselase 1% (w:v) 20 mg
Macerozyme 1% (w:v) 20 mg
Pectinase 0.5% 

(w:v)
10 mg

Note: Just before use, prepare the lysis buffer (with PBS, MTB, Triton X-100, and 
Rh-Ph). Stir and dissolve the enzymes in it, and centrifuge for 5 min to elim-
inate the precipitate. Adjust the pH to 5.5 (this is important for the activity 
of enzymes). The given composition of the cell wall digestion solution is 
only indicative and must be adjusted for each type of  material. We also rec-
ommend trying using alginate–lyases (concentration 1%–2% w:v), because 
alginate is a common cell wall compound in brown algae.
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24.3.2.3 Other solutions    
Table 24.7 Extraction solution

Composition Final concentration Quantity to add (for 1 mL final)

DMSO 5% 50 µL
Triton X-100 3% 30 µL
PBS – 920 µL

Note: Prepare fresh solution just before use.

Table 24.10 Mounting solution

Composition Concentration
Quantity to add 
(for 1 mL final)

Glycerol 33.3% 800 µL
PBS 66.6% 400 µL
PDA
(p-phenylenediamine, 
P6001, Sigma)

0.2% (w:v) 0.02 g

Note: Store at 4°C, in the dark. The solution gets darker with time.

Table 24.8 Actin-staining solution

Composition Final concentration
Quantity to add 
(for 300 µL final)

Rhodamine–Phalloidin 0.33 µM 15 µL of stock solution 
at 6.6 µM

PBS:MTB – 285 µL

Note: Rhodamine–Phalloidin can be replaced by AlexaFluor568–Phalloidin (A12380, Life 
Technology), that is thought to give better results on plant cells. In both cases, prepare 
the staining solution just before use. Store on the ice and protect from light.

Table 24.9 DNA staining solution

Composition Concentration
Quantity to add 
(for 10 mL final)

PBS – 9.9 mL
Hoechst 33258
(94403, Sigma)

10 µg mL−1 100 µL of a 1 mg mL−1 
stock solution

Note: Store at 4°C.
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24.3.3 Equipment

1.54 mL Eppendorf® tubes.
15- and 50 mL plastic tubes.
Fine forceps.
Glass coverslips (sterilized, if possible).
Microscope slides (sterilized, if possible).
Para�lm®.
Pipettes and tips (10/100/1000 µL range).
Plastic or glass Petri dishes.
Plastic Pasteur pipette.

24.4 Experimental procedures
24.4.1 Preparation of poly-l-lysine-coated coverslips

This is for free-�oating �laments. They must be prepared at least one day 
before the staining experiment (Note 1).  

 1. Soak coverslips in nitric acid for at least several hours.
 2. Wash the coverslips with distilled water, then with acetone, and 

again with water. Dispose them one-by-one on a paper towel, and let 
them dry until all drops of water have disappeared.

 3. Using a cotton bud spread a solution of 1 mg mL−1 poly-l-lysine on 
the whole surface of coverslips.

 4. Let the coverslips dry at room temperature (RT). The poly-l-lysine 
solution is thick and dries very slowly, so it is better to prepare the 
coverslips at least one day in advance. Drying step can be speeded 
up by putting the coverslips under a chemical hood.

24.4.2 Preparation of Ectocarpus samples

24.4.2.1 Filaments grown on coverslips
The preparation of Ectocarpus algal material is described in Chapter 23 by 
Rabillé et al.  

 1. On the bottom of the lid of an empty Petri dish, place a round 
piece of Whatman paper (that must cover all the Petri dish’s bottom 
surface). Press a small piece of cotton wool on the rim of the lid. 
Add a small volume of water on the Whatman paper and the piece 
of cotton wool to have enough humidity. Remove any exceeding 
water. Finally,  dispose a large piece of Para�lm® on the Whatman 
paper (Note 2).
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 2. Using forceps, takeoff the coverslips with the �laments grown on 
them from the bottom of the culture dish. Wipe the coverslips’ bot-
tom and edge with a paper towel.

 3. Put the coverslips on the surface of the Para�lm® with the �laments 
upside. For all the subsequent steps, dispose a small volume of each 
solution on the surface of the coverslips and close the moist chamber 
for incubation.

24.4.2.2 Free-floating filaments
 1. Gently crap or takeoff the �laments from the medium with forceps, 

and stack them in a pile. Quickly wash the pile of �laments by gently 
shaking it in clean sea water.

 2. Put a dense pile of �laments into an Eppendorf tube. The following 
steps up to the enzyme digestion will take place in the tube. When 
changing the liquids by a pipette, be careful of not losing or damag-
ing the �laments (Note 3).

 3. After the cell wall lysis step, spread the �laments on the surface 
of poly-l-lysine-coated coverslips (or slides) with forceps. Separate 
every tuft of �laments from one another (Note 4).

 4. Let some medium evaporate, keeping the coverslips damp. The rest 
of the protocol is then proceeded as for �laments that are directly 
grown on coverslips. Alternatively, the procedure can be continued 
in Eppendorf tube.

24.4.3 Actin staining procedure

 1. Incubate the �laments with the actin-stabilization solution (300 µM 
MBS, 2% DMSO, 0.1% Triton X-100 in MTB, pH 7,4) for 30 min in dark 
at room temperature (RT) (Note 5).

 2. Wash 3 × 10 min with MTB, at RT (this step might be omitted, Note 6).
 3. Fix the �lament with 4% PFA in MTB for 40 min at RT (Note 5).
 4. Wash 3 × 10 min in PBS:MTB 1:1 (v:v), at RT.
 5. Incubate the �laments with the cell wall lysis solution (2% cellulase, 

2% hemicellulase, 1% driselase, 1% macerozyme, 0.5% pectinase, 0.2% 
Triton X-100, 0.17 µM Rhodamine–Phalloidin, pH 5.5) for 15–20 min 
in dark, at RT.

 6. Wash 3 × 10 min in PBS:MTB 1:1, in the dark at RT (Note 7).
 7. Optional: Incubate the �laments in the extraction solution (2% DMSO 

in MT buffer) for 10 min, in the dark, RT (Note 5).
 8. Wash 3 × 10 min in PBS:MTB 1:1, in the dark at RT.
 9. Incubate the �laments in actin-staining solution (0.66 µM Rh–Ph in 

PBS:MT 1:1) in the dark for at least 1 h or overnight at 4°C or at RT 
(Note 5).

 10. Wash 3 × 10 min in PBS, in the dark at RT.
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 11. Stain the nucleus in 10 µg mL−1 Hoechst 33258 in PBS for 10 min, in 
the dark at RT.

 12. Wash 3 × 10 min in PBS, in the dark at RT.
 13. Mount in 0.2% phenylenediamine in glycerol:PBS 2:1. The slides are 

now ready to be observed under the �uorescent microscope. Two 
examples of actin-staining pattern observed in Ectocarpus sporo-
phyte vegetative cells are shown in Figure 24.1.

24.5 Notes
Note 1: Alternatively, slides can be used instead of coverslips.
Note 2: By turning over the Petri dish on its lid, you create a moist cham-

ber in which the coverslips will be incubated. The moisture avoids 
the evaporation of the medium deposited on the surface of the cov-
erslips, which is important especially for long incubation times. The 
Para�lm® is hydrophobic and prevents the medium to �ow over the 
surface of the coverslips.

Note 3: Avoid sucking �laments into the pipette tip when removing the 
medium from the tube while manipulating as gently as possible. If 
needed, slowly centrifuge the tube to take the �laments at the bottom 
of the tube. Avoid centrifuging �laments until they have been �xed.

(a) (b)

Figure 24.1 Organization of actin cytoskeleton in vegetative cells of Ectocarpus 
�laments labeled with Rhodamine–Phalloidin, as seen under epi�uorescence 
microscopy. Long bundles of actin �laments are observed in intermediate 
( elongated) cell during interphase (a) and during cytokinesis (b), in which actin 
�laments are densely packed at the cytokinetic diaphragm plane. Scale bars 
 represent 10 µm on each picture.
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Note 4: Do not pressure the �laments with the forceps, just spread them 
around very gently, because Ectocarpus �laments are easily dam-
ageable. Do not leave large piles of entangled �laments, which pre-
vent proper staining of the �lament, subsequently interfering with 
the observation. If needed, spread the �laments under a dissecting 
microscope using a �ne needle.

Note 5: Incubation duration might require adjustments, depending on 
the amount and nature of the treated material.

Note 6: The �rst washing step can be omitted. Alternatively, remove 
half quantity of the �rst solution above and complete with the solu-
tion of PFA (8%) without washing step.

Note 7: Spread free-�oating �laments on poly-l-lysine-coated coverslips 
(or slides) as described in Section 24.4.1. The rest of the protocol is 
identical for both types of sample.
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